Skip to content

JSON schema

JSON schemata are a powerful tool for expressing the expected structure of your input. You can use it to validate your input before you even send it to your C++ backend, which will result in better UX.

It can also be used for code generation. For instance, tools such as https://app.quicktype.io/ allow you to generate code in multiple programming languages from the JSON schema (even though the validations are usually omitted).

If you are interacting with Python, we warmly recommend https://docs.pydantic.dev/latest/integrations/datamodel_code_generator/. This allows you to generate Pydantic dataclasses, including the validation, from the JSON schema.

Note that this is only supported for JSON, not for other formats.

Basic idea

Suppose you have a struct like this:

struct Person {
  std::string first_name;
  std::string last_name;
  rfl::Email email;
  std::vector<Person> children;
  float salary;
};

You can generate a JSON schema like this:

const std::string json_schema = rfl::json::to_schema<Person>(rfl::json::pretty);

You do not have to pass rfl::json::pretty, but for the purposes of this documentation it is better to do so.

This will result in the following JSON schema:

{
    "$schema": "https://json-schema.org/draft/2020-12/schema",
    "$ref": "#/definitions/Person",
    "definitions": {
        "Person": {
            "type": "object",
            "properties": {
                "children": {
                    "type": "array",
                    "items": {
                        "$ref": "#/definitions/Person"
                    }
                },
                "email": {
                    "type": "string",
                    "pattern": "^[a-zA-Z0-9._%+\\-]+@[a-zA-Z0-9.\\-]+\\.[a-zA-Z]{2,}$"
                },
                "first_name": {
                    "type": "string"
                },
                "last_name": {
                    "type": "string"
                },
                "salary": {
                    "type": "number"
                }
            },
            "required": [
                "children",
                "email",
                "first_name",
                "last_name",
                "salary"
            ]
        }
    }
}

You can insert this into the tools mentioned above and see the generated code.

Adding descriptions

JSON schemata also often contain descriptions. reflect-cpp supports this as well.

struct Person {
  std::string first_name;
  std::string last_name;
  rfl::Description<"Must be a proper email in the form xxx@xxx.xxx.",
                   rfl::Email>
      email;
  rfl::Description<
      "The person's children. Pass an empty array for no children.",
      std::vector<Person>>
      children;
  float salary;
};
const std::string json_schema = rfl::json::to_schema<Person>(rfl::json::pretty);
{
    "$schema": "https://json-schema.org/draft/2020-12/schema",
    "$ref": "#/definitions/Person",
    "definitions": {
        "Person": {
            "type": "object",
            "properties": {
                "children": {
                    "type": "array",
                    "description": "The person's children. Pass an empty array for no children.",
                    "items": {
                        "$ref": "#/definitions/Person"
                    }
                },
                "email": {
                    "type": "string",
                    "description": "Must be a proper email in the form xxx@xxx.xxx.",
                    "pattern": "^[a-zA-Z0-9._%+\\-]+@[a-zA-Z0-9.\\-]+\\.[a-zA-Z]{2,}$"
                },
                "first_name": {
                    "type": "string"
                },
                "last_name": {
                    "type": "string"
                },
                "salary": {
                    "type": "number"
                }
            },
            "required": [
                "children",
                "email",
                "first_name",
                "last_name",
                "salary"
            ]
        }
    }
}

You also add a description to the entire JSON schema:

const std::string json_schema = rfl::json::to_schema<
    rfl::Description<"JSON schema that describes the required "
                      "attributes for the person class.",
                      Person>>(rfl::json::pretty);
{
    "$schema": "https://json-schema.org/draft/2020-12/schema",
    "$ref": "#/definitions/Person",
    "description": "JSON schema that describes the required attributes for the person class.",
    "definitions": {
        "Person": {
            "type": "object",
            "properties": {
                "children": {
                    "type": "array",
                    "description": "The person's children. Pass an empty array for no children.",
                    "items": {
                        "$ref": "#/definitions/Person"
                    }
                },
                "email": {
                    "type": "string",
                    "description": "Must be a proper email in the form xxx@xxx.xxx.",
                    "pattern": "^[a-zA-Z0-9._%+\\-]+@[a-zA-Z0-9.\\-]+\\.[a-zA-Z]{2,}$"
                },
                "first_name": {
                    "type": "string"
                },
                "last_name": {
                    "type": "string"
                },
                "salary": {
                    "type": "number"
                }
            },
            "required": [
                "children",
                "email",
                "first_name",
                "last_name",
                "salary"
            ]
        }
    }
}